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Deviations from ideal mixing in a number of isostructural binary solid solutions are parameterized 
using regular and subregular thermodynamic mixing models. Linear correlations between calculated 
interaction parameters and a term representing the volume mismatch of the two end-members are 
obtained. These correlations apply to a wide variety of structure types and are found to segregate the 
solid solutions according to the valence of the ions being mixed. Alkali halide systems show smaller 
relative deviations than oxide and chalcogenide systems. The ratio of the slopes of these correlations 
agree with predictions made from consideration of the effective charges of the ions being mixed. The 
correlations are used to predict the variation of critical temperature, and composition, as a function of 
component volume mismatch. Calculations of the free energies of transformation of rock salt to nickel 
arsenide structures and of wurtzite/sphalerite (fourfold coordination) to rock salt/nickel arsenide (six- 
fold coordination) structures are made using the interaction parameters predicted by the correlations 
and observed terminal solid solubility data. 

Introduction 

Thermodynamic modeling of solid solu- 
tion formation is of interest both from a 
practical and theoretical point of view. The 
mixing properties influence solid solubili- 
ties, physical properties, ditfusion coeffi- 
cients, and the distribution of components 
among coexisting solid and liquid phases. 
Calculation of phase boundaries at temper- 
atures and pressures other than those at 
which the original phase relations were de- 
termined is made possible if the energetics 
of the formation of the solid solution are 
known. This leads to one important geo- 
chemical application, namely, that of min- 
eral geothermometry and geobarometry. 
Solid solution formation is also an impor- 
tant phenomenon in the evaluation of high- 

temperature equilibria encountered in the 
production and refining of metals and al- 
loys; indeed most present theories of solid 
solution formation originate from work 
done on alloy systems (I). 

Theoretical modeling of solid solution 
formation is useful since one is able to gain 
insight into the factors, on an atomic scale, 
governing the energetics of the solid solu- 
tion. A solid solution of given composition 
will only be stable if its free energy is less 
than that of an equivalent mechanical mix- 
ture of its components, or of any possible 
exsolution products. Several factors di- 
rectly affect the thermodynamics of solid 
solutions and consequently the limits of 
solid solubility. The first major criterion for 
solid solubility is structural type. Gener- 
ally, complete miscibility between noniso- 
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structural end-members is not possible. 
Special cases can arise where complete 
miscibility may occur. For example, il- 
menite an-d corundum, for which one space 
group (R3) is a subgroup (R3c) of the other, 
could show complete solubility (2) or only 
second-order transitions. However, usually 
only mutual terminal solubility occurs in 
nonisostructural systems (3). 

In isostructural systems four main fac- 
tors can affect the range and stability of 
solid solution. The first and usually most 
important is the size difference of the ions 
or atoms being mixed. This results in a 
strain energy which is larger the greater the 
difference in size. For a given size differ- 
ence, it is often easier to put a smaller atom 
into a larger host lattice than vice versa. 
This effect is illustrated by asymmetric sol- 
ubility relations in binary systems. Solubil- 
ity of the smaller ion in the structure with 
larger volume is more extensive than solu- 
bility of the larger ion in the smaller struc- 
ture. The effect of size difference upon 
solid solution thermodynamics has formed 
the basis of most theoretical models of bi- 
nary solid solutions (4-6). The second fac- 
tor affecting solid solution formation is that 
of differences in bonding character. In 
cases where the covalency (ionicity) of the 
ions being mixed differs significantly, one 
would expect solubility to be limited, even 
when the ions are similar in size. Examples 
are NaCl-AgCl and NaBr-AgBr, which 
show large positive deviations in their heats 
of mixing (7). Valence of the ions being 
mixed can also affect the limits of solubil- 
ity, ions of higher valence mixing less fa- 
vorably than ions of lower valence, for a 
given size difference. 

When solid solution involves transition 
metal ions, electron configuration effects 
can play a significant role in determining 
the stability of the solution. 

Some efforts have been made to systema- 
tize solid solution behavior in binary sys- 
tems; these range from purely theoretical 

approaches (4, 5) to semiempirical treat- 
ments (6, 8). 

The theoretical models have largely been 
limited to alloy and alkali halide systems 
(I, 4) and have met with considerable suc- 
cess. A rigorous calculation of the partition 
function for ionic crystals, when the near- 
est neighbors of the cations (namely, the 
anions) remain the same, but the next-near- 
est neighbors change, immediately gives 
rise to difficulties in the definition of a pair 
interaction energy. This approach, which 
was successful for alloys, is therefore difti- 
cult for ionic crystals. In such cases most 
theoretical models calculate a form of strain 
energy, or allow for local relaxation about a 
given ion. 

Fancher and Barsch (4, 9, 10) modeled 
eight alkali halide systems using the classi- 
cal Born theory of ionic crystals to calcu- 
late the formation energy of point defects 
(II). The quality of this treatment is depen- 
dent upon the form of the interatomic po- 
tential used and on approximations made in 
calculating atomic displacements around 
the defect. Input parameters were lattice 
constants, compressibilities, and electronic 
polarizability data. The calculated heats of 
formation agreed well with experimental 
data. The initial calculation assumed a ran- 
dom distribution of substituted ions and 
therefore an ideal configurational ASmix. As 
in metallic alloys, vibrational excess entro- 
pies were found to play an important role in 
these halides. The excess vibrational con- 
tributions may be calculated directly from 
the dependence of heat capacity on compo- 
sition, or from the Debye temperatures of 
the solid solutions. Calculations were made 
using elastic constants and bulk moduli (4). 
The excess vibrational entropy contribu- 
tions in the alkali halide systems were 
found to be as high as 20% of the configura- 
tional term. 

Papers by Urusov (5, 12) have also used 
a “Born-type” approach, but ionicity dif- 
ferences were taken into account. Urusov 
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proposed that the mixing enthalpy of a 
given system is a result of differences in 
size and effective charge of the substituents 
and a consequence of deformation of the 
crystal structure and the changing of chemi- 
cal interactions. 

For cases in which the electronegativity 
difference is small, Urusov related A.Hmi, to 
a bond-length mismatch parameter (22). He 
related bond-length mismatch to volume 
mismatch for cubic crystals and obtained 
the expression 

AH = cXIX2n.z282 nw. 7 (1) 

with c an empirical parameter, n the coordi- 
nation number, z the charge, and 

m-9% 
6 = (x,viq + x2%7 ) ’ (2) 

1 and 2 being the two components. 
This expression emphasizes that misci- 

bility limits and deviations from ideality are 
determined by difference in total volume 
rather than differences in the size of the 
ions being mixed. Comparison of Ba-Ca 
mixing in various systems illustrates this 
point. In BaO-CaO solubility is limited 
(13), whereas for Ba$304-Ca$i04, where 
the volume difference is a smaller percent- 
age of the total volume, complete miscibil- 
ity is found (14). 

Semiempirical treatments of solid solu- 
tion formation in oxide systems with rock 
salt structure have been discussed by Dries- 
sens (15) and Navrotsky (6). Driessens 
modeled data for some oxide systems using 
a regular solution approach. In oxide sys- 
tems having the rock salt structure, experi- 
mental activity data shows that all systems, 
with the exception of NiO-MgO (16, I7), 
are either ideal or deviate positively from 
ideality. Driessens found a regular solution 
model to be a good approximation for all 
the rock salt oxides, though later work by 
Catlow et al. (18) has shown this is not nec- 
essarily the case, a subregular model being 

required to describe the NiO-MnO system. 
Driessens attempted to calculate the contri- 
bution to the interaction parameter from 
cation pair interactions by subtracting, 
from the experimental parameter, calcu- 
lated contributions from lattice energy and 
crystal field stabilization. The lattice energy 
contribution is a result of the difference in 
size of the ions being mixed, which results 
in a change in the Coulomb attractive and 
Born repulsive forces in the crystal. Again 
these were calculated using a model based 
on the Born approximation. The contribu- 
tion of this crystal energy to the heat of 
mixing is always found to be positive. The 
crystal field stabilization contributions for 
transition metal systems was calculated 
from numerical values of the stabilization 
energy given by Dunitz and Orgel (29). It 
was assumed that the stabilization energy is 
inversely proportional to the metal-oxygen 
distance. 

Navrotsky (6) also used a regular solu- 
tion approach in the modeling of deviations 
from ideality in some rock salt oxide sys- 
tems. An approximately linear dependence 
was found for W, the interaction parameter, 
on #, the square of a normalized size differ- 
ence parameter, with, for component ox- 
ides 1 and 2, a0 the lattice parameter: 

6= 
UO,l - ao,2 

UO,l + uo,2’ 
(3) 

A similar size difference parameter was 
used by Kleppa (20) in the modeling of de- 
viations from ideal&y in fused salt systems. 
A linear correlation was obtained between 
ij2 and, in the molten salt case, negative de- 
viations from ideality. This negative devia- 
tion is a result of the decrease in next-near- 
est-neighbor repulsive interactions as the 
size difference of the ions being mixed in- 
creases. Without long-range order, strain 
energy terms resulting from lattice con- 
straints play no role in fused salt systems 
(20. 



4 DAVIES AND NAVROTSKY 

The present work also uses a semiempiri- 
cal approach to the problem of parameter- 
ization of binary solid solution thermody- 
namics . Using regular and subregular 
(Margules) thermodynamic models, devia- 
tions from Raoultian behavior are parame- 
terized in terms of a volume mismatch term 
in binary solid solutions where no cation 
redistribution over inequivalent sites oc- 
curs. 

Thermodynamic Formalisms 

In this section the thermodynamic 
models used and their application to avail- 
able experimental data are described. 

Three main experimental methods are 
used in the study of the thermodynamics of 
binary solid solution formation. The first 
technique is that of solution calorimetry 
which allows direct determination of en- 
thalpies of mixing (22). However, few such 
studies have been conducted and thus such 
results are generally not available. The sec- 
ond technique involves measurement of ac- 
tivity-composition relations, which en- 
ables calculation of excess free energies of 
mixing. Activity-composition relations are 
seldom accurate enough to warrant fitting 
to equations with several free parameters; 
however, such measurements do allow reli- 
able modeling using regular and subregular 
thermodynamic approaches. Many deter- 
minations have been made on oxide sys- 
tems using either gas equilibration or solid- 
state galvanic cell techniques. 

The third method of study of solid solu- 
tion formtion is determination of solubility 
relations. In this method compositions are 
analyzed by X-ray, microscopic, and/or mi- 
croprobe techniques after equilibration at 
known temperatures and pressures. In this 
way the subsolidus phase diagram for the 
system may be constructed. Many solubil- 
ity relations have been determined in this 
way and results obtained in some sulfide 
(23, oxide (24), alkali halide (23, tung- 

state (26), and molybdate (27) systems will 
be referred to later. 

It is possible to relate regular and subre- 
gular thermodynamic models to the avail- 
able experimental data. In the subregular 
model the free energy of mixing of a binary 
solid solution involving ionic mixing on 1 
mole of equivalent sites is represented by 

ACti, = X,X&&& + BX,] 
+ RT[X,lnXi + X,1&], (4) 

where the component with smaller molar 
volume is labeled 1, the larger component 
2. A is the Margules parameter for the 
smaller component and B is the parameter 
for the larger component. 

The excess free energy of mixing is given 
by 

AG$j=” = X,X&&Y2 + BXI). (5) 

By appropriate differentiation of (4) we 
can obtain expressions for the partial molar 
free energies of mixing of components 1 
and 2, respectively, thus 

6AG 
Ap-, = RTlnai = AG + (1 - X,) 6x 

= (2B - A)X,X: + AX: + RTln;, (6) 

and 

6AG 
Apz = RTlnaz = AG + (1 - X,) 6x 

2 

= (2A - B)X;X2 + BX: + RTlnX2. (7) 

Let us consider an isostructural binary 
solid solution in which there is a miscibility 
gap. At the phase boundary, 

and 

P2a = tJJ2f3, (9) 
where 1 and 2 are components, and CY and l3 
are phases. If (Y and l3 are isostructural, a 
critical point is possible. 

Therefore from (8) and (9), and (6) and 
0, 
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G4 - B)&J2a - X:,&e> + BW:, 
- x:p> + RT(lnX2, - lnX*s) = 0, (10) 

WJ - AWL-& - XI&&) + AW:, 
- X$) + RT(lnXr, - InXr,) = 0. (11) 

To simplify our equations let 

P = c&&q3 
= x%1 - Xl,) - X$41 - Xl,), (12) 

4 = xa - x:p, (13) 

r = RT(lnX*, - lnX2p) 
= RT[ln(l - X,,) - ln(1 - X,,)], (14) 

s = &&a - &&G, 
= X1,(1 - m - X1,(1 - &d*, (15) 

t = xga - x;, 
= (1 - X1,)3 - (1 - Xlg)3, (16) 

u = RT[lnxI, - lnxr,], (17) 

then 

and 

(2A - B)p + Bq + r = 0 (18) 

(2B - A)s + At + u = 0. (19) 

From (18) and (19) it may be shown that 

r(t - s) - 2up 
B=4sp+(t-s)(p-q)’ 

cm 

A = b - 0 - 4 
2P * 

(21) 

Therefore for systems where a miscibility 
gap is present A and B may be calculated 
knowing the solubility of the two como- 
nents 1 and 2, at a temperature T. 

This model can also be applied to sys- 
tems where there is no miscibility gap but 
activity-composition relations are avail- 
able. 

From Eqs. (6) and (7) it may be seen that 

RTln,, = (2B - A)X,X2X: + AX; (22) 

and 

RTln,s = (2A - B)X:X2 + BX:. (23) 

Therefore, 

(;T1;,;2 = (2B - A)X1 + AX, (24) 

and 

RTln 2 
(1 _ x;j2 = W - @X2 + BXI. (25) 

Thus a least-squares fit of either RTln,J 
(1 - X1)* or RTln,*l( 1 - X2)* against Xr or 
X2, respectively, should give a straight line 
with slope 2(B - A) or 2(A - B) and inter- 
cept A or B, respectively. 

Equations similar to (20) and (21), and 
(24) and (25), may be obtained using a one- 
parameter regular solution model. In this 
case the free energy of mixing is given by 

+ RT[X,lnX, + X2lnX21. (26) 

For systems with a miscibility gap 

W = RT~~[(X~~~P)I(XIBX~~)I/ 
2(X2s - x*~). (27) 

The next section considers the application 
of Eqs. (20), (21), (24), (25), (27), and (28) to 
isostructural binary and pseudobinary sys- 
tems. 

Results 

The previous section described how to 
obtain the interaction parameters A and B 
(or W) from available solid solubility and 
activity-composition data. We must now 
consider how the magnitude of any devia- 
tions from Raoultian behavior will vary 
with the fundamental physical properties of 
the two end-members. In the introduction it 
was noted that four main factors affect the 
energetics of solid formation, namely, (1) 
size difference, (2) covalency difference, 
(3) valence, and (4) electron configuration. 
Of these, size difference is generally the 
most important. 

Effects of size difference can be parame- 
terized in three different ways. First, one 
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can simply consider the difference in ionic 
radii of the ions being mixed. Such a term, 
however, leads to difficulties since assign- 
ment of radii is always somewhat arbitrary. 
This is especially true when one tries to as- 
sign a cation radius in compounds having 
different anions, such as oxides, sulfides, 
selenides, etc. Small variations in the cova- 
lency of such compounds can drastically af- 
fect the “radii of ions.” This has recently 
been illustrated by Shannon (28), who 
found radii of cations in sulfides to differ 
significantly from cationic radii in oxides. 

As mentioned earlier, bond-length mis- 
match terms have been used to represent 
the size difference factor in solid solutions 
(6, 22). Such terms are more effective than 
ionic radii since they avoid the assignment 
of arbitrary radii to ions, and emphasize the 
importance of bond length rather than ra- 
dius of one atom. 

A more general and thermodynamically 
useful measure of the size difference term is 
given by a volume mismatch term. As with 
a bond-length term, volume mismatch does 
not rely on ionic radii and the volume of a 
phase includes the effects of small varia- 
tions in covalency, as shown by Shannon 
and Vincent (29). Thus both bond-length 
and volume terms allow us to group to- 
gether systems such as the rock salt oxides 
and chalcogenides. However, since volume 
is a basic thermodynamic parameter, its use 
is aesthetically preferable to bond-length 
terms, especially in complex crystals where 
coordination polyhedra do not have regular 
geometries. 

In addition, in complex crystals, the spe- 
cies being mixed occupy only a small frac- 
tion of the total volume. If one compares 
solid solubility in CaO-MgO (very limited), 
CaC03-MgC03 (quite extensive), and 
CgAlzSi~O**-Mg3A1*Si30t2 (complete), one 
is drawn to the conclusion that greater 
bond-length mismatch can be tolerated by a 
structure in which the ions being mixed are 
embedded in a matrix which can itself 

change geometry slightly to absorb the 
strain. The volume mismatch term defined 
below allows one to include this effect. 

We define the volume mismatch term 

v2 - VI 
AV=- 

v2 - Vl 

v2 
or - 

VI 

or “;I. v1, (28) 

with V2 the molar volume of the larger com- 
ponent, VI the molar volume of the smaller 
component, and I$ the mean of the two. 
Thus A, the Margules parameter for the 
smaller ion, will be associated with a vol- 
ume mismatch term [(VZ - Vl)lV2], the 
term representing solution in the larger 
structure. Similarly, B will be associated 
with [(VZ - Vd/VJ and W with [(V, - VI)/ 
Vi-i]. Note that AV is always defined to be 
positive. 

Thermodynamic mixing parameters, cor- 
responding volume mismatch terms, and 
temperature of experiment for rock salt ox- 
ide and chalcogenide systems are given in 
Table I. Data used in each system are as 
referenced. 

In several cases, particularly the rock 
salt oxide systems, activity-composition 
relations have been determined by several 
different authors, and a good example is 
MnO-NiO (18, 39, 54, 68, 69). In such 
cases either the most recent and/or what we 
believe to be the most reliable data are 
used. Omitted from Table I is the system 
NiO-MgO, which is the only rock salt sys- 
tem so far shown to exhibit negative devia- 
tions from ideality (16, 17), which are prob- 
ably associated with cation ordering (16). 

The criteria for use of a regular or subre- 
gular solution model in our analysis are 
threefold. First, if symmetric behavior, 
within experimental limits of error, was ob- 
served, a regular solution is used. Second, 
if the data used were not considered accu- 
rate enough to warrant a two-parameter 
model, e.g., CaO-MgO (47), the one-pa- 
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TABLE I 

THERMODYNAMICINTERACTIONPARAMETERS,CORRESPONDINGVOLUMEMISMATCH,ANDTEMPERATUREOF 
EXPERIMENTFORSOMEBINARY SOLIDSOLUTIONS 

System Structure Ref. 

Coo-Fe0 
Coo-MgO 
Coo-NiO 
CaO-Cd0 
FeO-MgO 
FeO-MnO 
COO-MnO 
PbSe-PbTe 
MgO-MnO 
MnO-NiO 
CaO-SrO 
PbS-PbTe 
CaO-MnO 
CaTe-MnTe 
Case-MnSe 
CaS-MgS 
CaS-MnS 
MnSe-PbSe 
CaO-Fe0 
CdO-NiO 
CaO-Co0 
CaO-MgO 
CaO-NiO 
MnO-MnS 
C02TiOG 

Mg*TiO, 
Fe,Al&Olr 

Mg&SW~t 
MgTiO,- 

NiTiO, 
FeTi03- 

MgTi03 
Fe*TiO.,- 

Mg2Ti04 
Co$iO,- 

FezSi04 
CoTi03- 

MnTi03 
Fe#iO,- 

Mg,SiO, 
MnTiOj- 

NiTiO, 
Ca3A12Si3012- 

&&Si3Q~ 
CaC03- 

FeC03 
KI-RbI 
RbBr-RbCl 

Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Rock salt 
Spine1 

Garnet 

Ilmenite 

Ilmenite 

Spine1 

Olivine 

Ilmenite 

Olivine 

Ilmenite 

Garnet 

Calcite 

Rock salt 
Rock salt 

- - 3.214 
4.799 
4.934 

0 
15.945 
5.243 
5.464 
4.262 

18.277 
12.328 
23.762 

- 
13.734 
23.461 
22.255 

- 
25.797 

- 
33.231 
40.673 
30.899 
60.611 
46.091 
52.230 

3.156 

- - 0.0317 1473 (30) 
0.0412 1100-1300 (30 
0.0577 1000-1300 (32) 
0.0661 1273 (33) 
0.0782 1373-1573 (34) 
0.0911 1423 (35) 
0.1280 1273 (36) 
0.1570 830 (37) 
0.1690 1473 (38) 
0.1854 1200 (39) 
0.2167 1073-1473 (40) 

- 773-1073 (40 
0.2295 1373 (4.3 
0.2299 1073-1273 (43) 
0.2387 873-1273 (43) 

- 973-1273 (23) 
0.2572 1073-1273 (23) 

- 1073 (44) 
0.3190 1123-1318 (45) 
0.3468 1323 (24) 
0.3550 1373-1573 (46) 
0.3947 2288-2703 (47) 
0.4106 1373-1968 (48) 
0.4761 1505 (49) 
0.0011 1573 (50) 

- - - - 
- - - - 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

- - 
- - 
- - 
- - 

0.2219 0.2852 22.518 
- 

18.347 
- - - 
- - - 
- 

25.909 
- 

18.447 
- 
- 
- 
- 

- - 
0.2387 0.3135 

- - 
0.2929 0.4143 

29.374 
- 

37.945 
- 
- 
- 
- 

- - 
- - 
- - 
- - 

- 
- 
- 

- - - 

0.816 0.0092 1200 (51) - - 

3.891 4.957 0.0175 0.0178 - 1673 (16) 

5.950 7.096 0.0264 0.0271 - 1573 (52) 

4.799 8.586 0.0337 0.0349 - 1573 (52) 

3.675 - - 0.0411 1453 (53) - 

4.123 0.0530 1523 (54) 

6.380 - 0.0578 1477 (55) 

8.336 11.032 0.0750 0.0811 - 1523 (54) 

9.623 0.1008 1200 (51) 

13.845 21.133 - 0.2043 0.2568 - 573-1073 (56) 

5.929 0.1150 298 (57) 
2.820 0.1218 298 (58) 

- 
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TABLE I-Conrinued 

System Structure Ref. 

KCl-RbCl 
RbBr-RbI 

KBr-KI 

NaBr-NaI 
CsCl-TIC1 

KI-NaI 

CSI-TlI 

KBr-NaBr 
KCl-NaCl 
LiCl-NaCl 

CsBr-TlBr 

NaI-RbI 
ZnMoO,- 

ZnWO, 

MnMoO,- 
MnWO, 

MnMo04- 
ZnMoO, 

Mnwo,- 

ZnWO, 
CaWO,- 

SrWO, 
CaW04- 

Pbwo, 
BaWO,- 

CaW04 

Rock salt 
Rock salt 

Rock salt 

Rock salt 
Cesium 

chloride 
Rock salt 

Cesium 
chloride 

Rock salt 
Rock salt 

Rock salt 
Cesium 

chloride 
Rock salt 
Wolframite 

Wolframite 

Wolframite 

Wolfram&e 

Scheelite 

Scheelite 

Scheelite 

- 
4.533 
- 

5.496 
- 

8.119 
- 

12.325 
12.781 

- 

- 

14.004 
- 

- 
6.129 
- 

9.991 
- 

10.339 
- 

13.910 
16.493 

- 

- 

15.612 
- 

1.750 
- 

7.949 
- 

8.852 

- 
10.359 

- 
- 

9.760 

9.682 

- 
26.118 

- 
0.1739 

- 

0.2126 
- 

0.2312 
- 

0.2561 

0.2801 
- 
- 

0.3148 
- 

20.000 

22.221 

21.023 

23.225 

28.900 

- 23.600 - 

21.592 

22.937 

28.800 

29.987 

- 0.0440 

0.0564 

0.1069 

0.1302 

0.2205 

- 
0.2105 

- 

0.2701 
- 

0.3442 

0.3890 
- 

- 

- 

0.0460 

0.0598 

0.11% 

0.1497 

0.2828 

0.1341 
- 

0.2053 
- 

0.2172 

- 

0.2514 

- 

- 

0.0038 

0.0169 

- 

- 

- 

- 

- 

933 (59) 
273-333 (60) 

478 (61) 
538 (6.3 

373-473 (63) 

373-473 (25) 
623 (64) 

373-573 (25) 
473-673 (25) 

590 (65) 
473-523 (66) 

691-733 (67) 
898-1248 (26) 

873-1273 (27) 

898-1298 (27) 

873-1073 (27) 

873-1073 (26) 

973 (26) 

1173-1373 (26) 

rameter model was applied. Finally, in 
cases where the Margules parameter for so- 
lution of the smaller ion in the larger struc- 
ture, namely, A, was calculated to be larger 
than B, the regular solution model was 
used. It is recognized, however, that this 
last assumption may hide some real and in- 
teresting complexity. 

Thermodynamic parameters of the rock 
salt systems given in Table I are shown as a 
function of the volume mismatch in Fig. 1. 
A linear correlation is obtained, with an al- 
most zero intercept, between deviations 
from ideality and the volume mismatch 
term. 

The linear fit gives 

A = 115.7[Av] - 4.6&l mole-r), 
3 = 0.83, (29) 

where A is A or B or W, and r is the correla- 
tion coefficient. 

The correlations in these systems appear 
to be independent of whether the ions being 
mixed are anions or cations. 

Table I gives results of some olivine, 
spine1 (with no cation redistribution), il- 
menite, garnet, and carbonate systems. In 
all these the ions being mixed are, as in the 
rock salt system, doubly charged and, with 
the exception of the garnets, in sixfold co- 
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0 I 1 I 
0.1 0.2 0.3 0.4 

AV 

FIG. 1. Interaction parameter, A (kJ) = A, B, or W, versus volume mismatch, AV (see text), for rock 
salt oxide and chalcogenide solid solutions. 

ordination. Figure 2 shows a plot of these 
and the rock salt systems, together with a 
plot of the rock salt systems alone for com- 
parison. The ternary systems appear to be- 
have similarly to the rock salt solid solu- 
tions, the linear correlation for all systems 
(ternary and binary) giving 

A = lOW[Av] - 0.4&I mole-‘), 
r* = 0 85 . . (30) 

Again, as might be expected, the correla- 
tion has an almost zero intercept. The fact 
that the non-rock salt systems show devia- 
tions similar to the rock salt systems sug- 
gests that structural type is not an impor- 
tant factor once volume differences are 
included in a mismatch term. That the gar- 
net systems, in which the ion is eight-coor- 
dinated, correlate with six-coordinated sys- 
tems also suggests that coordination 
number is not an important factor, once its 
effect on molar volume is taken into ac- 
count. 

Table I shows results on alkali halide sys- 
tems. The table includes both rock salt and 
cesium chloride structures and some cases 
with cations and others anions being mixed. 
Results are plotted against volume mis- 
match in Fig. 3. 

A linear correlation gives 

A = 46.9[AVl - 2.7&I mole-l), 
9 = 0.79. (31) 

A major point to note is the insensitivity of 
the parameters to the sign of the charge of 
species mixed and to structure. Once more, 
the eight-coordinated systems (CsCl struc- 
ture) appear to behave similarly to the six- 
coordinated ones (NaCl structure). 

A much better correlation between devia- 
tions from ideality and volume mismatch 
may be obtained by using enthalpy of mix- 
ing data. Such enthalpy determinations, 
with either anions or cations being mixed, 
have been performed on several rock salt 
alkali halide systems. The enthalpy of mix- 
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70 I I I I 

1. Co,TiO,-Mg,TiO, - All Systems 
2. FesAl~i,O,~Mg&Si~O,~ - - - - Rocksalt Systems 

- z 60 3. MgTiO,-NiTiO, 
5 4. FeTi4-MgTiO, 

2 5. Fe,TiO&.dgpTiO, 

” 50 - 6. Co,SiO,-Fe,SiO, /- 5 

d T.CoTiO,-MnTiO, 
x 8. Fe,SiO,-Mg,SiO, 

B 40 - 9. MnTiOs-NiTiO, 

& 5 10. Ca,AI,Si,O,,-Mg,AI,Si,O,, 

d 
30- 

1 1. CaCOs-FeCO, 

d 

p 
2 20 - 

: 

0 0.1 0.2 0.3 0.4 0.5 

AV 

FIG. 2. Interaction parameter, A (kJ) = A, B, or W, versus volume mismatch, AV, for binary solid 
solutions in which divalent ions are being mixed. A plot of the rock salt oxide and chalcogenide 
systems only is shown for comparison. 

I I I I 

. = CAT!ON NIXING 
0 = ANION MlXlNe 

KI-RbI 
0 

I 
Nsl-RbNA) KBrllsadal/ 

FIG. 3. Interaction parameter, X (kJ) = A, B, or W, versus volume mismatch, AV, for alkali halide 
solid solutions. 
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ing parameters is given in Table II and plot- 
ted as a function of volume mismatch in 
Fig. 4. The mixing parameters may be fitted 
by a first-order correlation where 

AH = 66.6[Av] - 5.52(kJ mole-‘), 
r;? = 0.97, (32) 

with 

AH = AH or BH or WH. (33) 
As Fig. 4 shows, this correlation results 

in a nonzero intercept. From thermody- 
namic and chemical considerations, for 
zero volume mismatch one might expect 
ideal behavior in these non-transition metal 
systems. One can fit the data to a second- 
order correlation which is constrained to 
pass through the origin, which gives 

hH = 124.6[AV12 + 10.9[Av] 
(kJ mole-‘), r2 = 0.99. (34) 

Data for some molybdate and tungstate 
systems are given in Table I and plotted as 
a function of volume mismatch in Fig. 5. A 

linear correlation between deviations from 
ideality and volume mismatch is again ap- 
parent, with 

A = 51.7[Av] + 20.3&l mole-r), 
r2 = 0.63. (35) 

Two points should be noted here and will 
be discussed later, namely, the insensitivity 
to whether cations or anions are being 
mixed, and the much higher relative devia- 
tions, with a large nonzero intercept, exhib- 
ited by these molybdates and tungstates 
compared to the other systems. 

Discussion 

The results obtained show that one can 
find linear or quadratic relations between 
thermodynamic mixing parameters and a 
term representing the difference in molar 
volume between the two end-members. 

This approach gives good correlations for 
all systems on which data in the literature 
are available. The use of volume mismatch 

TABLE II __ 

ENTHALPY~NTERACTION PAIUMETER~ANDCORRESPONDINGVOLUMEMISMATCHTERMSFORSOMEROCK 
SALTALKALIHALIDEANDROCKSALTOXIDE BINARYSOLID SOLUTIONS 

System 
WH v2 - VI 

VI 

v, - v, 

v2 

v2 - VI 

Vii Ref. 

KI-RbI 
KCl-RbCL 

KBr-KC1 
NaBa-NaCl 
KBr-KI 

KBr-NaBr 
KI-NaI 

NaBr-NaI 
KCl-NaCl 

MgO-NiO 
COO-MgO 
Coo-NiO 
CaO-Cd0 
FeO-MgO 

coo-Mno 
MgO-MnO 
MnO-NiO 

2.410 
3.371 
- 

5.227 
- 

12.274 
- 

7.981 
- 

- 
- 

- 
- 

2.950 
4.084 
- 

6.001 
- 

16.944 
- 

11.846 
- 

- - 

- 

- 
- 

- 
- 
4.030 
- 

7.437 
- 

10.614 
- 

18.485 

,14.622 
0 
0 
- 

5.021 
6.010 

17.085 

9.987 

0.1088 
0.1257 

- 

0.1598 
- 

0.2561 
- 

0.2126 
- 
- 
- 

- 
- 

0.1220 

0.1437 
- 

0.1902 
- 

0.3442 
- 

0.2704 
- 
- 
- 

- 
- 

- 
0.1411 

- 

0.2053 
- 

0.2614 
- 

0.3256 

0.0165 
0.0412 
0.0577 
0.0661 
0.0782 
0.1280 

0.1690 
0.1854 

(57) 
(70) 

(71) 
(70) 

( 72) 
(72) 
(72) 
(72) 

( 72) 
(73) 
(73) 
(73) 
(73) 

(34) 
(18) 
(74) 
(18) 
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0 

0 = CATION MIXING 
0 = ANION MIXING 

0.1 0.2 0.3 0.4 
AV 

5 

FIG. 4. Enthalpy interaction parameter, XH (kJ) = AH, Ba, or WH , versus volume mismatch, A V, for 
rock salt alkali halide solid solutions. 

instead of ionic radii mismatch as a mea- with rock salt structure can all be correl- 
sure of deviations from ideahty has allowed ated by Eq. (29) when related to the volume 
us to group together many more systems mismatch term. Furthermore, essentially 
than would otherwise be possible. Thus ox- the same correlation can be extended with 
ide, sulfide, selenide, and telluride systems equal accuracy to all systems in which the 

I I I I 

0.1 0.2 0.3 0.4 0.5 
AV 

MnMoO,-ZnMoO, 

FIG. 5. Interaction parameter, A (kJ) = A, B, or W, versus volume mismatch, AV, for tungstate and 
molybdate solid solutions. 



DEVIATIONS FROM IDEALITY IN SOLID SOLUTIONS 13 

ions being mixed are doubly charged, ex- 
cept for molybdates and tungstates. This 
suggests that the correlation is rather insen- 
sitive to details of structural type and coor- 
dination number. 

Silicate systems are of geochemical inter- 
est. Silicates generally have larger molar 
volumes and correspondingly smaller vol- 
ume mismatch terms than corresponding 
rock salt systems. One can confidently pre- 
dict, therefore, that pseudobinary silicate 
systems (with no cation or anion redistribu- 
tions) should show fairly small positive ex- 
cess free energies of mixing, quantitative 
estimates being obtained from Eq. (30). 

The correlations also suggest that both 
anion mixing and cation mixing result in 
similar relations between energy parame- 
ters and volume mismatch terms. Although 
data on anion mixing are generally rather 
limited for systems other than alkali 
halides, the few data for oxide and chalco- 
genide systems and the more abundant al- 
kali halide data are sufficient to demon- 
strate this point. 

Figure 6 shows all the correlations for al- 

kali halides, rock salt oxides and chalco- 
genides, and tungstates and molybdates. It 
is apparent that the volume mismatch term 
segregates these systems into three distinct 
groups. The alkali halide systems as a 
group show much smaller position devia- 
tions from ideality than the rock salt oxide 
and chalcogenide systems. This is a result 
of the different valence of the ions being 
mixed. The slopes of the correlations repre- 
sent the difference between mixing singly 
charged ions in the halides and doubly 
charged ions in the oxides and chalcogen- 
ides. From Eqs. (29) and (31) the ratio of 
the slopes is calculated to be 2.5. One might 
expect the difference in slope to be related 
by the term (z+z-), which, if all the com- 
pounds were truly ionic, would give a ratio 
of slopes of 4. The smaller difference in ob- 
served slopes therefore reflects deviations 
from completely ionic behavior. 

Hazen and Finger (75) estimated relative 
ionicities of bonds, denoted S, in alkali 
halides, oxides, and chalcogenides. S*, as- 
sumed to be constant for a given anion, was 
defined as 0.5 for the oxides and calculated 

FIG. 6. Linear correlations of interaction parameters and volume mismatch for alkali halide, rock 
salt oxide and chalcogenide, and tungstate and molybdate systems. 
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to be 0.4 for chalcogenides and 0.75 for al- 
kali halides. Using a weighted average of 
0.47 for S2 in the oxide and chalcogenide 
systems the ratio of the product S2(Z+Z-) in 
these and the alkali halides is 2.5. That this 
corresponds exactly to the observed ratio 
of the slopes of the correlations may be for- 
tuitous; however, it strongly suggests that 
the difference in slope is a result of the dif- 
ference in effective charge of the oxides 
and chalcogenides, and the alkali halides. 

Deviations in the molybdate and tung- 
state systems are somewhat surprising. 
Again a linear correlation is observed with 
no dependence upon which type of ion is 
being mixed. These compounds crystallize 
at atmospheric pressure with either a 
wolframite or a scheelite structure, the type 
of structure adopted depending upon the 
ionic radius of the cation (76). In scheelite 
the divalent cation is eight-coordinated and 
in tungsten four-coordinated, and in 
wolframite all cations are six-coordinated, 
This study finds similar deviations from ide- 
ality for both scheelite and wolframite sys- 
tems. This is consistent with findings for 
the singly and doubly charged systems in 
which structure and coordination number 
appear to have little effect upon the ob- 
served correlations. However, in Fig. 6 one 
sees that the tungstates and molybdates as 
a group exhibit much larger deviations from 
ideal&y than other systems, and that these 
deviations are similar whether the anion 
group or divalent cations are being mixed. 
Both findings are hard to explain. The cova- 
lent nature of the XOf- group is well recog- 
nized and this covalency is thought to lead 
to a strongly ionic M-O bond. If these dif- 
ferences between the XOf- group and the 
M-O bond are related to the energetics of 
mixing, it is surprising that the energetics 
are unaffected by whether anions or cations 
are being mixed. 

So far the results have been discussed in 
terms of size, charge, and covalency. In the 
case of transition metal-containing sys- 

terns, we must also consider effects of elec- 
tron configuration. 

Alkali halide systems, in which all ions 
have filled shell configurations, would not 
be expected to show any electron configu- 
ration effects. Thus, as shown in Fig. 4, a 
second-order correlation, constrained to 
pass through the origin, was used to fit the 
alkali halide enthalpy data. In systems con- 
taining transition metals, however, electron 
configuration effects are possible. Table II 
shows regular solution enthalpy parameters 
for some rock salt oxide solid solutions. Al- 
though deviations from ideality appear to 
increase as the volume mismatch increases, 
the rate of increase is somewhat irregular, 
and negative deviations occur in the 
NiO-MgO system. 

Electron configurational effects are nec- 
essarily specific to the particular transition 
metal ion and any resultant energetic stabi- 
lization can, at present, only be accurately 
determined by direct experimental mea- 
surement. Systems found to show negative 
deviations are the CoTiO3-MgTiO3 il- 
menite series (50), Co2Ti04-Mn2Ti04 and 
Ni2Ti04-Mn2Ti04 spine1 systems (54)) the 
Ni2Si04-MgZSi04 olivine system (Z7), and 
NiO-MgO rock salt solid solutions 
(16, 27). Deviations in the olivine system 
are presumably due to an ordering of the 
cations on the octahedral Ml and M2 sites, 
while deviations in the spine1 systems may 
also be a result of some cation redistribu- 
tion. However, negative deviations in the 
CoTi03-MgTi03 and NiO-MgO solid solu- 
tions appear to be a result of electron con- 
figuration effects alone. Such effects in the 
NiO-MgO system have been discussed 
elsewhere (26). 

Applications 

Prediction of Solid Solubility 

Probably the most obvious application of 
the correlations is to the prediction of ex- 
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petted solubilities and activity-composi- 
tion relations as a function of temperature. 
Many systems, for example, sulfides, se- 
lenides, and tellurides , are experimentally 
difficult to work with, in part because of 
nonstoichiometry. Knowing only the molar 
volume of the end-members, one can pre- 
dict expected deviations from ideality from 
these correlations. 

Considered here are binary systems in 
which the ions being mixed are doubly 
charged. Subregular mixing parameters can 
be predicted from Eq. (30). 

By manipulation of equations given un- 

der Thermodynamic Formalisms it is possi- 
ble to calculate the solvus and critical mix- 
ing temperature and composition from the 
parameters A and B. At the critical temper- 
ature, the third and second derivatives of 
the total free energy, with respect to both 
components, are equal to zero. 

Therefore it can be shown that, at the 
critical point, 

RT(,, = =I(,,(~ - B) 
+ 2&,(4B - 5A) + 6&,(A - B) (36) 

with 

X I(c) = 1 - X2(c) = 
4(5A - 4B) + dl6(4B - 5A)2 - 144(2A - B)(A - B) 

36(A - B) . (37) 

XlccJ and X2(c) may therefore be calculated 
from A and B from Eq. (37) and substitution 
into Eq. (36) yields Tc~J. Predictions of A, B, 
T(,,, Xlcc), and X2(=) for binary systems, in 
which doubly charged ions are being mixed, 
with volume differences ranging from 5 to 
45% are given in Table III. 

The solvi for these systems can also be 
calculated by calculating activities of both 
components, at various temperatures, from 
Eqs. (6) and (7). At the phase boundary al, 
= ais and ~2s = azu. The resulting solvi are 
shown in Fig. 7. 

This treatment can be applied to real sys- 

terns whose solubilities are extremely lim- 
ited and thus are experimentally difficult to 
determine. Good examples are BaO-MgO, 
BeO-ZnO, and CaO-CaS. Predicted solu- 
bilities up to 2200K are given in Table IV. 

Prediction of Deviations from Zdeality in 
High-Pressure Silicate Solid Solutions 

Using Eq. (30) it is possible to predict 
deviations from ideality in high-pressure 
phases of geological significance. 

Under lower-mantle conditions ilmenite 
and perovskite may become important sili- 
cate phases. Although FeSi03 is not known 

TABLE III 

PREDICTED CRITICAL TEMPERATURES AND COMPOSITIONS OF MIXING FOR VARIOUS COMPONENT SIZE 

DIFFERENCES 

Component 
size 

difference (%) 
v2 - VI v2 - VI 

v2 Vl &I iJ, 2, X KC) X 2(C) 

5 0.0488 0.0513 4.745 5.992 293 0.52 0.48 
15 0.1395 0.1622 13.715 15.951 903 0.55 0.45 
25 0.2222 0.2857 21.887 28.162 1555 0.59 0.41 

35 0.2979 0.4242 29.364 41.854 2274 0.61 0.39 
45 0.3673 0.5806 36.230 57.311 3089 0.63 0.37 



FIG. 7. Predicted solvi for binary systems for various component size differences. The percentage 
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size difference in each case is shown. 

TABLE IV 

PREDICTED SOLUBILITY LIMITS IN SOME BINARY 

SYSTEMS 

BeO-ZnO 41.484 71.684 1600 
1800 

zl 
2200 

<0.005 0.05 
0.005 0.07 
0.0125 0.0975 
0.015 0.105 
0.025 0.125 

BaO-MgO 55.666 127.786 1700 

:z 
2100 

10.005 0.1075 
<0.005 0.0026 
<0.005 0.0325 
<0.005 0.0375 

cao-cas 39.616 66.242 loo0 <0.005 0.0075 
1400 <0.005 0.035 
1600 0.007 0.055 
1800 0.015 0.085 
2000 0.025 0.115 
2200 0.035 0.145 

as a pure ilmenite or perovskite, its molar 
volume can be predicted using solid solubil- 
ity data (77) and crystal chemical correla- 
tions (78). Thus the molar volume of 
FeSi03, ilmenite, may be estimated 
from X-ray measurements on the MgSi03- 
FeSi03 ilmenite solid solution series (77). 
Using the crystal chemical correlations of 
Yagi et al. (78) and Shannon’s ionic radii 
(79), the molar volume of FeSi03, 
perovskite, is calculated for both high-spin 
and low-spin Fe*+. 

End-member molar volumes and calcu- 
lated interaction parameters, for 1 mole of 
ions being mixed, for the Mg-Fe spinel, il- 
menite, and perovskite silicate solid solu- 
tions, are given in Table V. For all solid 
solutions, moderate positive deviations are 
predicted, except for low-spin Fe*+ 
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TABLE V 

CALCULATED THERMODYNAMIC PROPERTIES OF 

Mg-Se MIXING IN HIGH-PRESSURE SILICATES 

Vg= molar VP, 
Structure (cm? (cm)) & & 

Spine1 39.58 42.04 5.86 5.87 
Ilmenite 26.76 23.91b 7.63 8.32 
Perovskite 25.22" 24.W 4.08 4.29 

25.82' l.% 2.03 

a Per ion being mixed. 
b Estimated from solid solubility-Ref. (77). 
c Calculated from Ref. ( 78). 
d Calculated from Ref. (78)-low-spin Fez+. 
c Calculated from Ref. (78)-high-spin Fe*+. 

perovskites, which, under high-pressure 
conditions, may be the most stable, where 
very small positive deviations would be ex- 
pected. 

Prediction of the Energetics of Phase 
Transitions 

This application concerns nonisostruc- 
tural systems, which usually show only lim- 
ited solubility. Knowing the terminal solid 
solubilities and expected deviations from 
ideality in the two regions of solid solubil- 
ity, one can calculate the free energy of the 
phase transition each end-member must un- 
dergo to be soluble in the other. Terminal 
solubilities have been experimentally deter- 
mined in a number of systems and devia- 
tions from ideality may be estimated from 
the present correlations. 

Direct experimental measurement of the 
energetics of phase transitions in the alka- 
line earth and transition metal oxides and 
chalcogenides is not often possible. Most 
occur uniquely as one phase at accessible 
pressure and temperature conditions. Oth- 
ers, e.g., BaO, SrO, and CaO, undergo 
high-pressure transitions to nonquenchable 
phases. A few, e.g., MnSe and MnTe, are 
polymorphic at atmospheric pressure. Thus 
one must resort to solid solution formation 
to estimate such transition energies to hy- 

pathetical structures or krypto modifica- 
tions . 

Presented are calculations for the rock 
salt to nickel arsenide transition, and rock 
salt (or nickel arsenide) to wurtzite (or 
sphalerite) transition, in some oxides and 
chalcogenides. 

Thermodynamic formalism. As before, 
components are 1 and 2 and phases are a 
and p. However, 01 and p now are not iso- 
structural. Component 1, on dissolving in 
the component 2-rich p phase, must neces- 
sarily undergo a phase transition from (r to 
p. The chemical potential of 1 in phase p 
will be composed of three terms: (1) the 
standard chemical potential, &, in its stable 
structure, (Y, (2) the change in chemical po- 
tential, Ap,,, due to the phase change OL + p, 
and (3) the change in the chemical poten- 
tial, Z?Tlnalp, due to the solid solution of 1, 
with structure p, with 2, where alp is the 
activity of 1 in 2 relative to p as a standard 
state. 

Therefore, 

PIP = ~7 + API,, + RTlnal,+ (38) 

The chemical potential of component 1 in 
its own phase OL is given by 

lJ4, = Id + RTlnal,. (39) 

Since, at the phase boundary, klo: = p,rs, we 
have 

RTlnal, = Apr,s + RTlnl,. (40) 

Therefore 

Ak+3 = RTln(al,/al& (41) 

and similarly 

A~$3+Ll = RTl n(azgla& . (42) 

We can calculate al,, aI@, ati, and azp at the 
limits of solubility from the correlations 
given previously and the molar volumes of 
1 and 2 in phases 01 and p. 

Usually the molar volumes of component 
1 in structure p and component 2 in struc- 
ture 01 (that is, the molar volumes of the 
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krypto modifications) have not been experi- 
mentally determined. A reliable means of 
estimating molar volumes of these phases is 
achieved by use of correlations of molar 
volume and the function (rcation + rmion)3. 
For the phases investigated, namely, rock 
salt, nickel arsenide, and wurtzite (or spha- 
lerite), such volume plots are shown in Fig. 
8, the radii used being those of Shannon 
(79). In each case an excellent linear corre- 
lation is obtained; for rock salt phases, 

V” = 1.077 (ranion + rcatioJ3 
+ 1.75 cm3 mole-t, R* = 0.98; (43) 

for nickel arsenide, 

V” = 1.121 (Tanion + rca&3 
- 0.39 cm3 mole-‘, R* = 0.91; (44) 

and for wurtzite/sphalerite phases, 

vo = 1.457 (ranion + r&i&3 
+ 2.693 cm3 mole-l, R2 = 0.99; (45) 

That nonzero intercepts result from these 
plots may well reflect the deviation of these 
structures from ideal close packing. Note 

TABLE VI 

CALCULATEDFREEENERGIESFORROCK SALTTO 
NICKEL ARSENIDE TRANSITIONS 

Compound 
AG 

(kJ mole-‘) Ref. 

MnTe 0 (80) 
MnSe 3.068 (80, 81) 
FeSe -5.619 (82) 
CoSe -3.280 (83) 
NiSe -5.607 (83) 
MgS 57.582 (23) 
MnS 11.988 (23) 
FeS -2.427 (23, 84) 

that these correlations use the cube of the 
sum of ionic radii, that is, the cube of the 
bond length, which is a term having dimen- 
sions of volume and insensitive to the 
choice of individual radii. Molar volumes 
obtained from Eqs. (43), (44), and (45) were 
used to estimate A and B using Eq. (30). 

Rock salt to nickel arsenide transforma- 
tion. The nickel arsenide structure occurs 
in the transition metal chalcogenides while 

50 

c7 
E 

s 40 

5 
3 
9 30 

3 20 Nickel Arsenide 

I 

0 10 20 30 40 50 

( rCATION + rANION) (A3) 

FIG. 8. Molar volume (cm3/mole) versus the cube of the sum of ionic radii for wurtzite and spha- 
lerite, rock salt, and nickel arsenide structures. 
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FIG. 9. Standard free energies, AGw,, of the rock salt to nickel arsenide transformation as a 
function of the standard enthalpy of formation, A@, of the rock salt phase at 298K. 

the rock salt structure occurs in the alkaline 
earth oxides and chalcogenides and transi- 
tion metal oxides. Using the above tech- 

TABLE VII 

CALCULATEDFREEENERGIESFOR 

WURTZITE/SPHALERITE(FOIJRFOLD COORDINATION) 

TOROCKSALT/NICKELARSENIDE(SIXFOLD 
COORDINATION)TRANSITIONS 

Compound 
AG 

(ld mole-l) Ref. 

CdTe 16.573 (8’5) 
ZnTe 51.442 (86) 
CdSe 8.367 (86, 87) 
MnSe -4.712 (87, 88) 
ZnSe 31.326 (86 88) 
CdS 5.603 (86, 89) 
cos -8.703 (90) 
FeS -5.623 (91) 
MnS -4.451 (89, 92, 93) 
NiS -33.063 (94 
ZnS 56.647 (86) 
Cd0 - 14.856 (95) 
coo -15.164 (3) 
Ml30 -35.861 (96) 
MnO - 13.622 
NiO -28.535 I? 
ZnO 24.267 (3) 

nique the free energy of the transition for 
rock salt to nickel arsenide structures was 
calculated for several chalcogenide systems 
(see Table VI). All molar volume data used 
to calculate the subregular solution parame- 
ters were taken from the correlations given 
by Eqs. (43) and (44). 

Also shown are free energy data for 
MnSe and MnTe, where the transition is 
experimentally observable, AG being calcu- 
lated from the observed transition pressure 
and molar volume change. 

Using the data given in Table VI, it was 
recently shown (85) that estimates can be 
made of free energies of transformation 
from rock salt to nickel arsenide structure 
in oxides from a plot of the free energy of 
transition against the standard enthalpy of 
formation of the rock salt phase (see Fig. 
9). It is observed that as the enthalpy of 
formation of the rock salt phase becomes 
less negative, i.e., the phase becomes less 
ionic, the more metallic and covalent NiAs 
structure becomes more competitive. 

Transitions from fou$old to sixfold coor- 
dination. Wurtzite and sphalerite struc- 
tures, in which cations and anions are in 
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FIG. 10. Octahedral and tetrahedral preference energies, AC? lehoEt, of cations in some binary oxides 
and chalcogenides. 

tetrahedral coordination, commonly occur 
in oxides and chalcogenides. Transitions 
from these to octahedral coordination in 
rock salt or nickel arsenide structures in- 
volve a large negative volume change (see 
Fig. 8). Values for the free energy of these 
transitions can be calculated from available 
solid solubility data using the treatment de- 
scribed previously. In several compounds, 
transitions are experimentally observable, 
free energies in these cases are calculated 
from the observed transition pressure and 
molar volume differences. Data thus calcu- 
lated for some oxides and chalcogenides 
are given in Table VII. 

As would be expected, crystal field stabi- 
lizations play a major role in determining 
the energy of transformation for the transi- 
tion metal-containing compounds. Figure 
10 shows that, in accordance with crystal 
field effects and covalency, preference for 
octahedral coordination increases in the or- 
der Zn < Cd < Mn, Fe Co < Ni, Mg. The 

preference for tetrahedral coordination is 
slightly greater for chalcogenides than for 
oxides, but the overall patterns of stability 
remain the same. 
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